
Domain-size statistics in the time-dependent Ginzburg-Landau equation driven by a dichotomous
Markov noise

Katsuya Ouchi,1,* Naofumi Tsukamoto,2 Takehiko Horita,3,† and Hirokazu Fujisaka2

1Kobe Design University, 8-1-1 Gakuennishi-Machi, Nishi-ku, Kobe 651-2196, Japan
2Department of Applied Analysis and Complex Dynamical Systems, Graduate School of Informatics,

Kyoto University, Kyoto 606-8501, Japan
3Department of Mathematical Sciences, Osaka Prefecture University, 1-1 Gakuencho, Osaka 599-8531, Japan

�Received 31 August 2007; published 23 October 2007�

The domain dynamics of magnetization obeying the time-dependent Ginzburg-Landau equation driven by a
dichotomous Markov noise is discussed. The system with various domain sizes in the early stage temporally
evolves following an annihilation of neighboring domain walls, where each domain wall moves diffusively.
Three statistics on the domain size, i.e., average domain size, the ensemble average of the domain size
distribution function, and the spatial power spectrum of the magnetization, are evaluated to characterize the
domain wall annihilation process. A phenomenological evolution equation for the domain-size distribution
function is constructed by simplifying the annihilation process of the domain wall appropriately, and the
underlying mechanism of those statistics is investigated.
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I. INTRODUCTION

Over the last decade, the dynamics of the magnetization
of ferromagnetic systems below the critical temperature
driven by a temporary oscillating external magnetic field has
been extensively studied �1–4�. It has been established that
the systems exhibit two qualitatively different dynamical
phases according to the amplitude and frequency of the ex-
ternal field and experience a nonequilibrium transition be-
tween the two phases, which is called the dynamical phase
transition �DPT�. DPT was first observed numerically in the
deterministic mean-field system �1�, and has subsequently
been studied in numerous Monte Carlo simulations of the
kinetic Ising system �2�. It has also been observed experi-
mentally in an ultrathin Co film on Cu�100� �3�.

To elucidate the origin of DPT, Fujisaka et al. �4� pro-
posed a simple model presented by

ṡ = f�s� + F�t� , �1�

where f�s�=s−s3 and F�t�=h cos �t, and clarified that there
exist two phases in Eq. �1� referred to as the symmetry-
restoring oscillation �SRO� and the symmetry-breaking oscil-
lation �SBO�. They further investigated the spatially distrib-
uted system

ṡ�x,t� = s − s3 + �2s + F�t� �2�

driven by the periodic field F�t�=h cos �t, and found that
DPT studied with Eq. �2� belongs to the same universality
class of the equilibrium Ising model in zero field.

It is quite interesting to ask whether DPT would be ob-
served under other kinds of external fields, e.g., the dichoto-
mous Markov noise �DMN�. The dynamics of Eq. �1�, with
F�t� being DMN and a nonlinear function f�s�, has been

extensively studied by many authors mainly on the basis of
the master equation �5�. For a review, see Ref. �6�. In Ref.
�7�, we studied Eq. �1� with f�s�=s−s3 and DMN F�t� with
the amplitude H0 in the context of DPT. It is established that
the system exhibits two different behaviors called symmetry-
restoring motion �SRM� for H0�Hc, characterized by
�s�t��T=0, and symmetry-breaking motion �SBM� for H0

�Hc, characterized by the coexistence of two stable motions
�s1�t��T=−�s2�t��T�0, where �¯�T is the long-time average,
and Hc is the threshold of H0 separating SRM from SBM. It
should be noted that Eq. �1� with F�t� being Gaussian white
noise superposed on a periodic field is also an interesting
subject of recent substantial studies �8�, which is related to
the study of thermal noise effect on DPT.

We are, now, interested in the dynamics of spatially dis-
tributed system s�x , t� in one dimension obeying Eq. �2�
driven by DMN F�t� for H0�Hc, instead of the periodically
oscillating field. In general, s�x , t�, the order parameter at the
position x and at time t, consists of many domains corre-
sponding to each of the two SBMs separated by domain
walls, and temporally evolves through a sequence of colli-
sions and annihilations of the domain walls. The process was
characterized by the distribution n�l , t� of domains with size
l, and we found that the ensemble average �n�l , t��F with
respect to F�t� obeys a power law �n�l , t��F� l−� with ��2
�9�. The purpose of the present paper is to clarify the statis-
tical characteristics of domain annihilation process by intro-
ducing several statistical quantities.

The present paper is organized as follows: In Sec. II, the
system investigated in this paper is introduced, and the dy-
namics of a single domain wall is discussed. It is shown that
the motion of the domain wall is diffusive. In Sec. III, the
dynamics of domain walls is discussed by introducing the
average domain size, the distribution of domain size, and the
spatial power spectrum of s�x , t�. In Sec. IV, phenomenologi-
cal evolution equations of the domain-size distribution are
proposed in terms of partial differential equations driven by
DMN, which are further reduced to a set of ordinary differ-
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ential equations driven by DMN. In Sec. V, we attempt to
find analytical forms of three statistical quantities discussed
in Sec. III by using the reduced equations derived in Sec. IV.
Concluding remarks are given in Sec. VI.

II. DYNAMICS OF A SINGLE DOMAIN WALL

We investigate the asymptotic dynamics of the spatially
distributed order parameter s�x , t� obeying Eq. �2�, where
F�t� is DMN �6� which alternates between +H0 and −H0 with
the transition rate � f

−1. The probability density p��� of the
waiting time � for the transitions of F�t� is given by

p��� = � f
−1e−�/�f . �3�

H0 is set to be H0�Hc throughout this paper, where Hc
=2�1/3�3/2 is the critical value between SBM and SRM.
Thus, the two stable uniform SBMs satisfying s+�t��0 and
s−�t��0, which obey

ṡ±�t� = s± − s±
3 + F�t� , �4�

coexist �7�. The existence of two SBMs implies that s�x , t�,
in general, consists of more than two domains separated by
domain walls.

Let us first consider the dynamics of a single domain wall
in an infinite length of space. Figure 1�a� shows a domain
wall locating at the position x0�t� at time t. The boundary
condition s�x , t�=s±�t� for x→ ±� is set without loss of gen-
erality. We introduce an order parameter a�x , t� defined by
�4�

s�x,t� =
1 + a�x,t�

2
s+�t� +

1 − a�x,t�
2

s−�t� , �5�

which measures how much s�x , t� is close to either s+�t� or
s−�t�. Substitution of Eq. �5� into Eq. �2� with using Eq. �4�
yields

ȧ�x,t� = ��t�2�a − a3� +
�2

�x2a +
3

4
�s+�t�2 − s−�t�2��1 − a2� ,

�6�

where ��t� is given by

��t� �
1

2
�s+�t� − s−�t�� . �7�

The boundary condition a�x , t�= ±1 for x→ ±� holds. Sup-
pose a0�x , t� is the solution of

ȧ0�x,t� = ��t�2�a0 − a0
3� +

�2

�x2a0 �8�

satisfying a0�x , t��0 ��0� for x�0 ��0�, and a�x , t� can be
approximated by a�x , t�=a0�x−x0�t� , t� where the domain
wall locates x=x0�t�. Here x0�t� is determined by

− ẋ0
�

�x
a0 =

3

4
�s+�t�2 − s−�t�2��1 − a0

2� . �9�

Multiplying each side of Eq. �9� by �
�xa0 and integrating over

x, one obtains the equation

ẋ0�t� = −
s+�t�2 − s−�t�2

	�t�
, 	�t� � 	

−�

� 
 �

�x
a0�2

dx . �10�

We assume � f is large and employ an adiabatic approxi-
mation for s±�t�. The stable fixed point s0+ �s0−� of Eq. �4�
with F�t�= +H0 �F�t�=−H0�, satisfying s0±�0, is given by

s0± � cos 
 ±
1
�3

sin 
 , �11�

where sin 3
=H0 /Hc �7�. By the symmetry of the system,
−s0− �−s0+� is also the stable fixed point of Eq. �4� with
F�t�= +H0 �F�t�=−H0�. By using the stable fixed points,
s±�t� is approximated as

s±�t� = ±
H0 ± F�t�

2H0
s0+ ±

H0 � F�t�
2H0

s0−. �12�

Then � in Eq. �7� is given by the constant �=cos 
. Thus, the
stationary solution of a0�x , t� in Eq. �8� is obtained as

a0�x� = tanh��x/�2� , �13�

which leads to 	=2�2� /3. As a result, the position x0�t� of
the domain wall obeys

ẋ0 = v�t� = −
V

2
F̃�t� , �14�

where V�2�6 sin 
 and F̃�t��F�t� /H0 are defined. Figure
1�b� shows a numerically evaluated time evolution of x0�t�,

FIG. 1. �Color online� �a� Snapshot of s�x , t� with a single do-
main wall at x=x0�t� and �b� time evolution of x0�t�. The boundary
conditions of s�x , t� at time t are given by s�+� , t�=s+�t�
and s�−� , t�=s−�t�.
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which indicates that the dynamics of the domain wall can be
characterized by a diffusion process.

The diffusion constant D is estimated as follows: For a
large � f, it is assumed that v�t� satisfies the relations

�v�t�� = 0, �v�t1�v�t2�� =
V2

4
e−2�f

−1t1−t2. �15�

The variance is obtained as

��x0�t� − x0�0��2� =
V2

8
� f�2t + � f�e−2�f

−1t − 1�� � 2Dt

�16�

with the diffusion constant

D =
V2

8
� f . �17�

Equation �17� is compared with the numerical simulation
in Fig. 2. It reveals that the dynamics of an isolated domain
wall is well approximated by a random walk if � f is large
enough.

III. STATISTICS OF MANY DOMAIN WALLS

The spatial pattern of s�x , t� starting with a random initial
condition, in general, shows the coexistence of many do-
mains with various domain sizes in the early stage and then
shows a process of annihilations of neighboring domain
walls in the temporal evolution, as shown in Fig. 3. We here
examine the distribution n�l , t� of domain size l, the time
evolution of average domain size l�t�, and spatial power
spectrum I�k , t� of s�x , t� in order to characterize the domain
wall annihilation process. All the results in this section are
obtained by numerical integration of Eq. �2� for H0=0.38
and � f =10, where the Euler difference scheme with the time
increment �t=0.01, the space interval �x=0.5, and the sys-
tem size L=219 with a periodic boundary are used.

A. Distribution of domain size

The ensemble average of the distribution of domain size
is defined as follows: A sample time series of DMN F�t�,
which is called a realization, is numerically evaluated by
applying a pseudo-random number generator. The realization
gives a distribution function n�l , t� of domain size l by inte-
grating Eq. �2�. Then the ith distribution function ni�l , t� for
the ith realization of F�t� is introduced. The ensemble aver-
age �n�l , t��F with respect to F�t� is defined by

�n�l,t��F � lim
NR→�

1

NR
�
i=1

NR

ni�l,t� , �18�

where NR is the total number of realizations. Hereafter the
ensemble average with respect to F�t� is denoted by �¯�F.

Figure 4 shows a numerically evaluated �n�l , t��F as a
function of l for several values of t. The initial state s�x ,0� in
solving Eq. �2� for each realization is chosen to satisfy the
condition that the values of �0

�ni�l ,0�dl for all i are almost
the same. The figure shows that the form of �n�l , t��F for

FIG. 2. �Color online� D vs H0. Solid line shows the theoretical
result given by Eq. �17�. The symbols are the simulation results for
� f =10.

FIG. 3. �Color online� Spatial pattern of s�x , t� for t= �a� 20 and
�b� 35 with a lot of domains.

FIG. 4. �Color online� Time evolution of �n�l , t��F at t=4�+�,
20��, 100�*�, 500���, and 2500���. The dashed line shows l−2.
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l� l0�t�, l0�t� denoting the peak position of �n�l , t��F,
changes from an exponential distribution to a power distri-
bution

�n�l,t��F � l−� �19�

with ��2 for a large t.

B. Temporal evolution of average domain size

The average domain size l�t� is defined by using �n�l , t��F

as

l�t� �
	

0

�

l�n�l,t��Fdl

	
0

�

�n�l,t��Fdl

. �20�

Equation �20� is numerically obtained by counting the num-
bers of domain walls in all the realizations. Figure 5�a�,
showing the dependence of l�t� on t, reveals that l�t� grows
for large t as

l�t� � t0.73. �21�

C. Spatial power spectrum

The ensemble average of the spatial power spectrum
�I�k , t��F is then calculated to study the spatial correlation of
s�x , t�, where I�k , t� is defined by

I�k,t� � lim
L→�

1

L�	0

L

s�x,t�e−ikxdx�2

. �22�

Figure 6�a� shows the numerically evaluated �I�k , t��F at sev-
eral values of t. It is apparent that the ensemble average of
the power spectrum is characterized by the Lorentzian form,
i.e.,

�I�k,t��F �
��t�

k2 + ��t�2 , �23�

where ��t� is the inverse correlation length of the spatial
correlation. One finds that ��t� decreases in time.

IV. PHENOMENOLOGICAL TIME EVOLUTION
EQUATION FOR n„l , t…

In this section, we introduce a phenomenological time
evolution equation for n�l , t� to investigate the statistical
properties described in Sec. III. We here consider a simpli-
fied model of the dynamics for the order parameter a�x , t�

FIG. 5. �Color online� Time dependence of l�t� defined by Eq.
�20�: �a� the result obtained by numerical integration of Eq. �2�, �b�
the theoretical results obtained in Sec. V B by using Eq. �45� to-
gether with �+� the reduced equations for domain size �Eqs. �32�,
�34�, and �35��, and with �� Eqs. �46�, �47�, and �34�.

FIG. 6. �Color online� Time evolution of �I�k , t��F defined by
Eq. �22�: �a� the numerically obtained results by integrating Eq. �2�
at t=100�*�, 500���, and 2500���, �b� the theoretical results at t
=100�+�, 500��, 2500�*� discussed in Sec. V C.
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defined in Eq. �5� with a periodic boundary of the system
size L. In this model, the spatial pattern is approximated by
the sequence of sgn�a�x , t��, as shown in Fig. 7.

The model assumes that the system evolves temporally
only through the motion of the domain walls. Each domain
size at time t is denoted as lj�t� with j=1,2 , . . . ,2NL�t�,
where NL�t� is the total number of domains in the a�x , t�
�0 region, which is called the “+” side. NL�t� is also equal
to the number of domains in the a�x , t��0 region �the “−”
side� due to the periodic boundary condition. The number
densities n±�l , t� of the domains with size l for “±” sides are
defined by

n+�l,t� � lim
L→�

1

L
�
j=1

NL�t�

��l2j−1�t� − l� , �24a�

n−�l,t� � lim
L→�

1

L
�
j=1

NL�t�

��l2j�t� − l� , �24b�

where the limit is taken by keeping NL�0� /L constant. One
finds that the conditions liml→−0n±�l , t�=liml→�n±�l , t�=0 are
satisfied.

We construct phenomenological evolution equations of
n±�l , t� as follows. In the case that no domain walls collide,
we assume that the growth rate of all of the shrinking do-
mains takes −V and that of the stretching domains takes +V,
where V is the same as that in Eq. �14�. Thus, lj�t� obeys the
equation of motion

dlj�t�/dt = �− 1� jVF̃�t� , �25�

�j=1, 2, . . ., 2NL�t��. From Eqs. �24� and �25�, one obtains
the equations of n±�l , t� as

ṅ±�l,t� = ± F̃�t�
�n±�l,t�

�l
, �26�

where the notation ġ��1/V�dg /dt is introduced.
Equations �26� are the starting equations to study the col-

lision process of domain walls. In the case of F̃�t�= +1, the
“+” side domains shrink, and the equation for n+�l , t� is un-
changed, where the collision process is included by the con-
dition liml→−0n+�l , t�=0. The equation of motion for n−�l , t�
for the stretching domains is, on the other hand, derived as
follows. If a “+” side domain, say �2j−1�th domain, disap-
pears due to the collision of two neighboring domain walls,
then the neighboring “−” side domains of �2j−2�th and
�2j�th coalesce into a new “−” side domain with the size

l2j−2� �t�= l2j−2�t�+ l2j�t�, �See Fig. 7�. The probability of real-
ization of such a process per unit time and unit system size is
equal to the probability of the disappearance of a “+” side
domain per unit time and unit system size, which is equal to

Vn+�0, t�. The time evolution equation for n−�l , t� with F̃�t�
= +1 is, therefore, given by

ṅ−�l,t� = �+�t��− 2n−�l,t� +
1

N�t�
n− * n−�l,t�� − F̃�t�

�n−�l,t�
�l

,

�27�

where �+�t��n+�0, t� /N�t� and

N�t� � 	
0

�

n+�l,t�dl = lim
L→�

NL�t�
L

�28�

is the number density for total “+” side domains. It should be
noted that N�t� is also equal to the number density for total
“−” side because of the periodic boundary condition. In Eq.
�27�, the terms including −2n−�l , t� and the convolution
n−*n−�l , t���0

l n−�l� , t�n−�l− l� , t�dl� express the annihilation
and creation of domains by the coalescence of two domains,
respectively. By the symmetry of the system, the time evo-

lution equations for n±�l , t� including both F̃�t�= +1 and −1
are summarized as

ṅ±�l,t� = ���t��− 2n±�l,t� +
1

N�t�
n± * n±�l,t�� ± F̃�t�

�n±�l,t�
�l

�29�

with

�±�t� = n±�0,t�/N�t� . �30�

It should be noted that �+�t� ��−�t�� always vanishes if
F�t�= +1 �F�t�=−1� because of Eqs. �26�.

The solutions of �29� are asymptotically approximated by
the exponential forms �9�

n±�l,t� �
N�t�
lc
±�t�

exp�−
l − l±�t�

lc
±�t� ���l − l±�t�� �31�

with the Heaviside function ��x�. lc
±�t� in Eq. �31� are the

widths of n±�l , t� and obey the equations of motion given by

l̇c
±�t� =

lc
±�t� + l±�t�

lc
��t�

��l��t�� , �32�

where ��x� is the function defined by

��x� = �0, x � 0

1, x = 0.
�33�

l±�t� in Eqs. �31� and �32� are the shortest domain sizes for
the “±” sides and obey the equations of motion given by

l̇±�t� = � F̃�t� + ��l±�t�� , �34�

with l±�0. The number density of either “+” or “−” side
domains, N�t�, is determined by

FIG. 7. �Color online� Spatial configuration at time t of the
phenomenological model. The vertical axis represents sgn�a�x , t��.
lj�t� and Lj�t�=�k=1

j lk�t� denote the jth domain length and the jth
domain wall position, respectively.
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1 = N�t��lc
+�t� + lc

−�t� + l+�t� + l−�t�� , �35�

which is the result from the trivial condition that the system
size L is invariant under the time evolution. Equations �31�,
�32�, �34�, and �35� are fundamental equations to discuss the
coalescing process and are referred to as the reduced equa-
tions for domain size. It has been confirmed numerically that
each number density n±�l , t� for each realization is character-
ized by the exponential form given in Eq. �31� �9�.

V. ANALYSIS FOR STATISTICS OF DOMAIN WALLS

In this section, we attempt to derive Eq. �19� with �=2,
Eq. �21�, and Eq. �23� by using the reduced equations for
domain size. Let us introduce an assumption that lc

±�t� and
l±�t� with sufficiently large t satisfy the condition of either
lc
+�t�� �lc

−�t� , l±�t�� or lc
−�t�� �lc

+�t� , l±�t��, depending on each
realization. The condition due to Eqs. �32� and �34�, i.e., the
exponential time dependence of lc

±�t� and the diffusive time
dependence of l±�t�, is referred to as the long-time condition.

A. Power law in the domain-size distribution

Let us discuss the distribution of domain size and try to
derive the power-law dependence Eq. �19� by using the long-
time condition. By replacing the symbol “+”�“−”� with “g”
in the former �latter� case of the long-time condition, and
simultaneously “−”�“+”� with “s”, the condition is expressed
as lc

g�t�� �lc
s�t� , lg�t� , ls�t��.

We first consider the region l� �l±�t��. In this case, ��l
− l±�t��=1 and l− l±�t�� l hold in Eqs. �31�. Therefore, n�l , t�
for l� �l±�t�� is written as

n�l,t� �
1

lc
g�t�� 1

lc
g�t�

e−l/lc
g�t� +

1

lc
s�t�

e−l/lc
s�t�� , �36�

where the approximation N�t��1/ lc
g�t� has been used. In the

range l� lc
sln�lc

g / lc
s�, the second term in rhs of Eq. �36� can be

neglected by noting lc
g� lc

s. The ensemble average of Eq.
�36� is, therefore, given in the form

�n�l,t��F �� 1

lc
g�t�2e−l/lc

g�t��
F

= 	
0

�

lc
−2e−l/lcp�lc,t�dlc,

�37�

where p�lc , t� is defined by

p�lc,t� � ���lc
g�t� − lc��F. �38�

The distribution function p�lc , t� of lc
g�t� is estimated as

follows. For lc
s�t�, Eq. �32� implies

l̇c
s�t� =

lc
s�t� + ls�t�

lc
g�t�

��lg�t�� � 0 �39�

because of lc
g� lc

s. Namely, lc
s�t� is almost constant in this

approximation. On the other hand, ignoring lg�t�, Eq. �32� for
lc
g�t� is integrated to yield

ln
lc
g�t�

lc
g�0�

�
V

lc
s	

0

t

��ls�u��du , �40�

where lc
s is approximated to be constant. The equation of

motion of ls�u� is given by Eq. �34�, which is a kind of
random walk with a barrier at the origin. Hence, the integral
in the rhs of Eq. �40� is evaluated by measuring the duration
� that ls�u� stays at the origin for 0�u� t. The probability
density P�� ; t� of � defined by

P��;t�d� � Prob�� � 	
0

t

��ls�u��du � � + d�� �41�

is approximately derived for t�� f in the form

P��;t� �� 2

�� ft
e−�2/�2�ft�, �42�

as shown in Appendix A.

Equation �42� gives the probability density that
lc
s

V ln
lc

lc�0�
takes the value � at time t, and thus the probability density
p�lc , t� for t�� f is evaluated as

p�lc,t� �� 2

�� ft

lc
s

Vlc
e−� lc

s

V
ln

lc
lc�0�

�2

/�2�ft� � t−1/2 1

lc
. �43�

The ensemble average in Eq. �37� is eventually written as

�n�l,t��F � t−1/2	
0

�

e−l/lclc
−3dlc = t−1/2l−2, �44�

together with Eq. �38�. As shown in Fig. 8, the lc dependence
of Eq. �43� is confirmed by solving the reduced equations for
domain size and also by solving the original system Eq. �2�.

B. Time evolution of average domain size

Since �0
�l�n+�l , t�+n−�l , t��dl=1 and �0

��n+�l , t�
+n−�l , t��dl=2N�t�, the definition of l�t� in Eq. �20� is rewrit-
ten as

l�t� =
1

2�N�t��F
. �45�

If one assumes the long-time condition, Eq. �32� is approxi-

mated by l̇c
±�t�= �lc

±�t� / lc
��t����l��t��, or equivalently by

ẋ± = e−x���l��t�� , �46�

where x±� ln lc
± are introduced. Therefore N�t� defined by

Eq. �35� is approximated as

N�t� �
1

ex+�t� + ex−�t� . �47�

As a result, the average domain size l�t� with the long-time
condition is obtained by using Eq. �47� in Eq. �45�.

Time evolution of Eq. �45� is numerically examined by
obtaining N�t� both from the reduced equations for domain
size and from Eq. �47� with Eqs. �46� and �34�. The results
are shown in Fig. 5�b�. It is revealed that both the reduced
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equations for domain size and their simplified equations ob-
tained by applying the long-time condition lead to the same
time dependence Eq. �21� as that obtained from Eq. �2�.

We should note the following point. If N�t� is approxi-
mated as N�t��1/ lc

g�t� with lc
g�t� satisfying Eq. �40�, then

�N�t��F for t�� f is evaluated, by using Eq. �42�, as

�N�t��F =
1

lc
g�0�

� 2

�� ft
	

0

t

e−�2/2�fte−V�/lc
s
d�

�
lc
s

Vlc
g�0�

� 2

�� ft
�1 − e−�1/2�f+V/lc

s�t� � t−1/2. �48�

Equation �48� contradicts the results mentioned above, so
that the approximation of Eq. �39� seems not to be appropri-
ate for the derivation of l�t�. The simultaneous differential
equations �46� have to be solved in this case.

C. Spatial power spectrum

In this subsection, we derive the spatial power spectrum
I�k , t� defined by Eq. �22� for the phenomenological model,
where the spatial pattern a�x , t� at time t is approximated as
a sequence of two values +1 and −1, i.e.,

a�x,t� = �− 1�n �49�

for Ln�t��x�Ln+1�t� with n=0,1 , . . . ,2NL�t�−1 �See Fig.
7�. As shown in Appendix B, the power spectrum for the
above pattern is obtained as

I�k,t� =
8N�t�

k2 Re
�1 − �+�k,t���1 − �−�k,t��

1 − �+�k,t��−�k,t�
�50�

for k�0, where �±�k , t� are the characteristic functions de-
fined by

�±�k,t� � N�t�−1	
0

�

e−ikln±�l,t�dl . �51�

By applying the approximate solutions �31�, �± are obtained
as

�± =
e−ikl±�t�

1 + iklc
±�t�

. �52�

With Eq. �52�, Eq. �50� yields

�I�k,t��F =
8

k2�N�t�
�a+�t�a−�t� − b+�t�b−�t��c�t� + �a−�t�b+�t� + a+�t�b−�t��d�t�

c�t�2 + d�t�2 �
F

, �53�

where a±�t�, b±�t�, c�t�, and d�t� are defined by

a±�t� � 1 − cos kl±�t� , �54�

b±�t� � klc
±�t� + sin kl±�t� , �55�

c�t� � 1 − lc
+�t�lc

−�t�k2 − cos k�l+�t� + l−�t�� , �56�

d�t� � k�lc
+�t� + lc

−�t�� + sin k�l+�t� + l−�t�� . �57�

Under the long-time condition, Eq. �53� is reduced to

�I�k,t��F � � 8N�t�

k2 + 
 1

lc
+ +

1

lc
−�2�

F

. �58�

The reduced equations for domain size are numerically inte-
grated to determine the time dependence of lc

±�t�. Equation

FIG. 8. �Color online� Distributions p�lc , t� defined by Eq. �38�;
�a� the result obtained by using a numerical integration of the re-
duced equations for domain size �Eqs. �32� and �34�� and �b� the
result obtained by using a numerical simulation of Eq. �2�.
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�58� is drawn in Fig. 6, where N�t���lc
+�t�+ lc

−�t��−1 is used.
It can be found that the theoretical �I�k , t��F �Eq. �58�� is
approximately given by the Lorentzian form and is in agree-
ment with the simulation result.

VI. CONCLUDING REMARKS

In this paper, we investigated the dynamics of domain
walls under the dichotomous Markov noise �DMN�, particu-
larly focusing on the spatial pattern of s�x , t� under the con-
dition that two stable uniform motions coexist. We first dis-
cussed the dynamics of a single domain wall for infinite
system size. The equation of motion for the domain wall
position x0�t� was derived, and it was found that the motion
of x0�t� is characterized by the diffusion process.

The temporal evolution of s�x , t� for a random initial con-
dition was, then, discussed. In the early stage there exist
many domains with various sizes and then the field s�x , t�
temporally evolves by repeating pair annihilation of neigh-
boring domain walls. We introduced the distribution function
n�l , t� of domains with the size l to discuss the statistical
characteristics of the process. The time evolution of its aver-
age value �n�l , t��F with respect to the applied DMN F�t� was
numerically evaluated, and it was found that �n�l , t��F change
from an exponential distribution to a power distribution

�n�l,t��F � l−�, �59�

with ��2 as time goes on. The average domain size l�t�
defined by Eq. �20� was then investigated, and we found that
the time dependence is given as

l�t� � t0.73. �60�

Furthermore, the spatial power spectrum �I�k , t��F was calcu-
lated to discuss the spatial correlation of s�x , t�. It was found
that �I�k , t��F approximately takes the Lorentzian form with
the line width ��t� which is a decreasing function of t. We
proposed a phenomenological time evolution equation of
n�l , t� to discuss the mechanism for such statistics. It was
eventually revealed that the power distribution of domain
size l obtained after the ensemble average is due to the fact
that the exponent of the exponential domain size distribution
for each realization of F�t� is given by a log-normal distri-
bution. A set of simplified evolution equations to reproduce
the time dependence of l�t� was derived. Nevertheless, we
could not explain the time dependence �Eq. �60�� analytically
because the nonlinear simultaneous differential equations
given by Eq. �46� must be solved. The analytical form of the
spatial power spectrum was finally derived, which is repre-
sented as the superposition of Lorentzians.
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APPENDIX A: DERIVATION OF EQ. (42)

We consider the motion of ls�t� obeying the equation

l̇s�t�= F̃�t�+��ls�t�� with the initial condition ls�0�=0 and

F̃�0�=−1. Let P�� ; t�d� be the probability that �
��0

t ��ls�u��du��+d� with respect to all the possible paths

of �ls�u�� based on realizations of �F̃�u��. The probability
density P�� ; t� can be decomposed into the sum

P��;t� = �
n=0

�

P�n���;t� , �A1�

where P�n��� ; t� denotes the same probability density as
P�� ; t� under the additional condition that ls�u� returns n
times back to ls=0 for 0�u� t. Let �r�t� be the probability
density of the recurrence time for the process �x�t�� obeying

dx

dt
= VF̃�t� , �A2�

i.e., dichotomous diffusion on a line. Then P�n��� , t� �n�1�
satisfies the recursion relation

P�n+1���;t� = 	
0

�

du	
0

t−�

ds�r�s�p�u�P�n��� − u;t − s� ,

�A3�

where P�0��� ; t� is given by

P�0���;t� = p�0����q�0��t − �� �A4�

with p�0��t�� p�t�, which is defined in Eq. �3�, and

q�0��t� � 	
t

�

�r�s�ds . �A5�

By putting

P�n���;t� = p�n����q�n��t − �� , �A6�

Equation �A3� is reduced to the recursion relations

p�n+1��t� = 	
0

t

dup�u�p�n��t − u� , �A7a�

q�n+1��t� = 	
0

t

du�r�u�q�n��t − u� , �A7b�

with P�n+1��� ; t�= p�n+1����q�n+1��t−��. The Laplace-transform
�LT� of Eq. �A6� for both � and t is written as

P̃�n��z;Z� = 	
0

�

dt	
0

�

d�e−Zt−z�P�n���;t� = p̃�n��z + Z�q̃�n��Z� ,

�A8�

where g̃�z� represents the LT of g�t�. The LTs of Eqs. �A7�
read

q̃�n��z� = ��̃r�z��nq̃�0��z�, p̃�n��z� = �p̃�z��n+1. �A9�

Substitution of Eqs. �A8� and �A9� into Eq. �A1� yields
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P̃�z;Z� =
1

Z

�1 − �̃r�Z���̃r�Z�p̃�z + Z�
1 − �̃r�Z�p̃�z + Z�

, �A10�

where the LT of Eq. �A5�, q̃�0��Z�=Z−1�1− �̃r�Z��, is intro-
duced. The LT of Eq. �3� leads to

p̃�z� =
1

1 + � fz
. �A11�

By substituting Eq. �A11� into Eq. �A10� and then applying
the inverse LT with respect to z, one obtains the equation

P̃��;Z� =
�1 − �̃r�Z���̃r�Z�

� fZ
e−�1+�fZ−�̃r�Z���/�f . �A12�

The explicit form of �̃r�Z� is derived as follows. The dis-
tribution function f�x , t� for x obeying Eq. �A2� is obtained
as shown in Ref. �10�, where the initial condition is chosen

as f�x ,0�=��x� and
�f�x,t�

�t t=0=0. Then the distribution at the
origin Q�t�� f�0, t� is written in the form

Q�t� = V−1e−t/�f���t� + �2� f�−1�I0�t/� f� + I1�t/� f��� ,

�A13�

where I��z� are the modified Bessel functions of the first

kind, and the corresponding Q̃�z� is given by

Q̃�z� =
1

2V

z + 2� f
−1 + �z�z + 2� f

−1�
�z�z + 2� f

−1�
. �A14�

Since �̃r�z� is related to Q̃�z� as �̃r�z�=1− �VQ̃�z��−1 because
of dx /dt  =V, one obtains

�̃r�z� = 1 + � fz − �� fz�� fz + 2� . �A15�

Substituting Eq. �A15� into Eq. �A12� and expanding it,
assuming � fZ�1 because we are interested in the case
t�� f, one finally gets

P̃��;Z� =� 2

� fZ
e−�2�fZ�/�f . �A16�

The inverse LT of Eq. �A16� with respect to Z yields Eq.
�42�.

APPENDIX B: DERIVATION OF EQ. (50)

Since the Fourier-transform of Eq. �49� is calculated as

	
0

L2NL

a�x,t�e−ikxdx = �
n=1

2NL

�− 1�n 1

ik
e−ikLn−1�e−ikln − 1� ,

�B1�

I�k , t� defined by Eq. �22� is written in the form

I�k,t� = lim
NL→�

2N�t�
k2 Re� 1

NL
�
n=1

2NL

�1 − e−ikln�

+
1

NL
�
m=1

2NL−1

�
n=m+1

2NL

�− 1�n−me−ik�j=m+1
n−1 lj�e−ikln − 1�

�1 − e−iklm�� , �B2�

where N�t�=NL�t� /L2NL
is used. By noting that the character-

istic functions �±�k , t� defined by Eq. �51� are expressed
as �+�k , t�=limNL→��1/NL��n=1

NL e−ikl2n−1 and �−�k , t�
=limNL→��1/NL��n=1

NL e−ikl2n, the first term of the rhs reduces
to the form

lim
NL→�

1

NL
�
n=1

NL

��1 − e−ikl2n−1� + �1 − e−ikl2n��

= �1 − �+� + �1 − �−� . �B3�

The second term can be rewritten as

lim
NL→�

1

NL
�
n=1

NL

�1 − e−ikl2n−1��1 − e−ikl2n�

+ lim
NL→�

�
m=1

NL−1
1

NL
�
n=1

NL−m ��1 − e−ikl2n−1��1 − e−ikl2�n+m��

�
k=0

m−1

e−ikl2�n+k�e−ikl2�n+k�+1 − �1 − e−ikl2n−1��1 − e−ikl2�n+m�−1�

e−ikl2n �
k=1

m−1

e−ikl2�n+k�−1e−ikl2�n+k� + �1 − e−ikl2n�

�1 − e−ikl2�n+m�−1��
k=1

m−1

e−ikl2�n+k�−1e−ikl2�n+k� − �1 − e−ikl2n�

�1 − e−ikl2�n+m��e−ikl2n+1 �
k=1

m−1

e−ikl2�n+k�e−ikl2�n+k�+1� . �B4�

By using the assumption that ln and lm �n�m� are statisti-
cally independent of each other, which is based on the ran-
domness of the initial pattern s�x ,0�, Eq. �B4� is reduced to

�1 − �+��1 − �−� + ��1 − �+��1 − �−��+�− − �1 − �+�2�−

− �1 − �−�2�+��
n=0

�

��+�−�n

=
2�1 − �+��1 − �−� − �1 − �+�2�− − �1 − �−�2�+

1 − �+�−
�B5�

because of �±  �1 for k�0. The substitution of Eqs. �B3�
and �B5� into Eq. �B2� leads to Eq. �50�.
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